返回 产品详情
电池原位红外附件
来自上海零露仪器设备有限公司
¥0.01
发布时间  2024-02-23 17:34:37 关注次数  89
上海零露仪器设备有限公司
免费会员 1年
商家供应
图文介绍 产品参数 供应商信息

电池原位红外附件

产品详情


 

电化学原位红外光谱分析是红外分析技术的一个重要分支,能够定性分析电催化(如CO2电还原等)反应、各种类型电池(如锂离子、锂硫电池等)充放电过程中电极表面的产物或中间产物随时间(电位)不断变化的趋势,是研究电化学反应机理以及电化学反应动力学的重要手段之一。

构造原理

(1)两电极体系,专为电池体系设计。

(2)电化学反应池气密性良好,可通入反应气体。

(3)金刚石晶体,适用性广。

 

2:基本原理示意图

 

附件组成

(1)红外光谱仪主机适配底板,适配主流红外光谱仪。

(2)光路系统。

(3)PEEK材质气密性电化学池。

(4)O型圈密封件。

 

主要特点

(1)优化的光路系统,光通量大。

(2)电化学池密封性能好,可通入反应气体。

(3)金刚石晶体光通量大。

(4)独特的电极,电解液信号采集调节技术。

(5)可实现电化学红外质谱三联用。

(6)金刚石晶体板和电化学池拆卸方便,可方便在手套箱中组装电池。

(7)提供现场技术服务。

 

主要技术参数

1.光谱范围:250/525-4000 cm-1

2.晶体种类:金刚石晶体

3.电化学池:PEEK材质,两电极体系,气密性池体,可方便在手套箱中装卸电池,设有进气口和出气口,可实现各类电池充放电过程中红外光谱的采集。

4.温控电化学池,温控范围:RT-100℃,温控精度0.1℃。

5.电极与金刚石晶体距离调节系统,带刻度微调功能,重现性好,以实现观测电解液溶剂化或电极表面物种变化。

6.电化学池可实现电化学质谱仪与红外三联用,提供多联用技术方案。

7.反射次数:单次反射。

8.反射类型:外反射。

9.光路反射系统适配主流品牌红外光谱仪,提供光谱仪适配底板,光路系统方便安放或取出光谱仪样品仓。

 

 

 

应用案例

 

 

锂离子电池  Chem. Mater. 2020, 32, 8, 3405–3413



 

锂离子电池 ACS Energy Lett. 2020, 5, 1022−1031



 

锌离子电池 Adv. Funct. Mater. 2020, 2003890



 

锂离子电池  Joule 2022, 6, 399–417

 

部分客户论文发表清单:

1. Jianping Xiao*, Bin Zhang*, et al. Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to bbbbate. Nat. Commun. 2020, 11, 3415

2. Lei Yan, Yonggang Wang*, et al. Chemically Self-Charging Aqueous Zinc-Organic Battery. J. Am. Chem. Soc. 2021, 143, 15369-15377 

3. Bingliang Wang, Yongyao Xia*, et al. In situ structural evolution of the multi-site alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation rebbbbbb. Energy Environ. Sci. 2020, 13, 2200-2208

4. Yang Peng*, et al. Breaking Linear Scaling Relationship by Combbbbbbbbal and Structural Crafting of Ternary Cu-Au/Ag Nanoframes for Electrocatalytic Ethylene Production. Angew. Chem. Int. Ed. 2021, 60, 2508-2518 

5. Zhuo Yu, Yonggang Wang*, et al. Boosting Polysulfide Redox Kinetics by Graphene-Supported Ni Nanoparticles with Carbon Coating. Adv. Energy Mater. 2020, 10, 2000907

6. Xinwei Ding, Zhi Yang*, et al. Biomimetic Molecule Catalysts to Promote the Conversion of Polysulfides for Advanced Lithium–Sulfur Batteries Adv. Funct. Mater. 2020, 30, 2003354 

7. Hong Guo*, Xueliang Sun*, et al. Dual Active Site of the Azo and Carbonyl-Modified Covalent Organic Framework for High-Perbbbbance Li Storage. ACS Energy Lett. 2020, 5, 1022-1031

8. Bin Zhang* et al. Superficial Hydroxyl and Amino Groups Synergistically Active Polymeric Carbon Nitride for CO2 Electroreduction. ACS Catal. 2019, 9, 10983-10989 

9. Suya Zhou, Zhi Yang*, et al. Dual-Regulation Strategy to Improve Anchoring and Conversion of Polysulfides in Lithium–Sulfur Batteries ACS Nano. 2020, 14, 7538–7551

10. Yongyao Xia*, et al. Low-Temperature Charge/Discharge of Rechargeable Battery Realized by Intercalation Pseudocapacitive Behavior. Adv. Sci. 2020, 7, 2000196

11. Lei Wang*, Yonggang Wang, et al. Pencil-drawing on nitrogen and sulfur co-doped carbon paper: An effective and stable host to pre-store Li for high-perbbbbance lithium–air batteries. Energy Storage Materials. 2020, 26, 593-603

12. Bin Zhang, et al. Unveiling in situ evolved In/In2O3− x heterostructure as the active phase of In2O3 toward efficient electroreduction of COto bbbbate. Science Bulletin. 2020, 65, 1547-1554

13. Huani Li, Shubiao Xia*, Hong Guo*, et al. Red Phosphorus Confined in Hierarchical Hollow Surface-Modified Co9S8 for Enhanced Sodium Storage. Sustainable Energy Fuels. 2020, 4, 2208-2219 

14. Guanglei Cui*, Liquan Chen, et al. Non-flammable nitrile deep eutectic electrolyte enables high voltage lithium bbbbl batteries. Chem. Mater. 2020, 32, 3405-3413 

15. Guanglei Cui*, et al. Investigation on the Cathodic Interfacial Stability of Nitrile Electrolyte and its perbbbbance with High Voltage LiCoO2 Chem. Commun. 2020, 56, 4998-5001 

16. Zhongbin Zhuang*, et al. A highly-active, stable and low-cost platinum-free anode catalyst based on RuNi for hydroxide exchange membrane fuel cells. Nat. Commun. 2020, 11, 5651 

17. Tiancun Liu, Yong Wang*, et al. Organic supramolecular protective layer with rearranged and defensive Li debbbbbbbb for stable and dendrite-free lithium bbbbl anode. Energy Storage Materials. 2020, 32, 261–271

18. X. Yin, Y. Wang*, et al. Designing cobalt-based coordination polymers for high-perbbbbance sodium and lithium storage: from controllable synthesis to mechanism detection. Materials Today Energy. 2020, 17, 100478

19. Song Chen, Jintao Zhang*, et al. Regulation of Lamellar Structure of Vanadium Oxide via Polyaniline Intercalation for High-Perbbbbance Aqueous Zinc-Ion Battery. Adv. Funct. Mater. 2020, 30, 2003890 

20. Yanrong Xue, Zhongbin Zhuang*, et al. Sulfate-Functionalized RuFeOx as Highly Efficient Oxygen Evolution Rebbbbbb Electrocatalyst in Acid. Adv. Funct. Mater. 2021, 31, 2101405

21. Hong Guo*, et al. Cooperative catalytic interface accelerates redox kinetics of sulfur species for high-perbbbbance Li-S batteries. Energy Storage Materials. 2021, 40, 139-149

22. Bin Zhang*, et al. Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping. SCIENCE CHINA Chemistry. 2021, 64, 1493–1497

23. Yang Peng*, et al. Geometric Modulation of Local CO Flux in Ag@Cu2O Nanoreactors for Steering the CO2RR pathway toward High-Efficacy Methane Production. Adv. Mater. 2021, 33, 2101741

24. Yonggang Wang*, et al. Molecular Tailoring of n/p-type Phenothiazine Organic Scaffold for Zinc Batteries. Angew. Chem. Int. Ed. 2021, 60, 20826-20832 

25. Hongliang Jiang*, Chunzhong Li*, et al. Dynamically bbbbed Surfactant Assembly at the Electrified Electrode–Electrolyte Interface Boosting CO2 Electroreduction. J. Am. Chem. Soc. 2022, 144, 6613–6622

26. Yang Peng*, et al. Au-activated N motifs in non-coherent cupric porphyrin bbbbl organic frameworks for promoting and stabilizing ethylene production. Nat. Commun. 2022, 13, 63 

27. Jie Zeng*, et al. Copper-catalysed exclusive CO2 to pure bbbbic acid conversion via single-atom alloying. Nature Nanotechnology. 2021, 16, 1386-1393 

28. Min-Rui Gao*, et al. Identification of Cu(100)/Cu(111) Interfaces as Superior Active Sites for CO Dimerization During CO2 Electroreduction. J. Am. Chem. Soc. 2022, 144, 1, 259-269 

29. Chen Feng, Shiming Zhou*, Jie Zeng*, et al. Tuning the Electronic and Steric Interbbbbbb at the Atomic Interface for Enhanced Oxygen Evolution. J. Am. Chem. Soc. 2022, 144,21,9271-9279 

30. Rui Lin, Jianhui Wang, et al. Asymmetric donor-acceptor moleculeregulated core-shell-solvation electrolyte for high-voltage aqueous batteries. Joule 2022, 6, 399–417 

31. Xiaogang Zhang*, et al. Successive Cationic and Anionic (De)-Intercalation/Incorporation into an Ion-Doped Radical Conducting Polymer. Batteries & Supercaps 2019, 2, 979-984

32. Zhongju Wang, Yongzhu Fu*, et al. BiredoxIonic AnthraquinoneCoupled Ethylviologen Composite Enables Reversible Multielectron Redox Chemistry for LiOrganic Batteries. Adv. Sci. 2022, 9, 2103632 

33. Jintao Zhang*, et al. Defect evolution of hierarchical SnO2 aggregatesfor boosting COelectrocatalytic reduction. J. Mater. Chem. A 2021, 9, 14741-14751

34. Fei Ai, Yijun Lu*, et al. Heteropoly acid negolytes for high-power-density aqueous redox flow batteries at low temperatures. Nature Energy 2022, 7, 417–426 

35. Zhejun Li, Yijun Lu*. Polysulfide-based redox flow batteries with long life and low levelized cost enabled by charge-reinforced ion-selective membranes. Nature Energy 2021, 6, 517–528

36. Shanshan Lu, Wei Zhou. et al. Phenanthrenequinone-like moiety functionalized carbon for electrocatalytic acidic oxygen evolution. Chem. 2022, 8, 1415-1426.  

37. Tieliang Li, Yifu Yu, Bin Zhang*, et al. Sulfate-Enabled Nitrate Synthesis from Nitrogen Electrooxidation on Rhodium Electrocatalyst. Angew. Chem. Int. Ed. 2022, e202204541 

38. Yanbo Li, Bin Zhang, Yifu Yu*, et al. Electrocatalytic Reduction of Low-Concentration Nitric Oxide into Ammonia over Ru Nanosheets. ACS Energy Letters 2022, 7, 1187-1194 

39. Yanmei Huang, Yifu Yu, Bin Zhang*, et al. Direct Electrosynthesis of Urea from Carbon Dioxide and Nitric Oxide. ACS Energy Letters 2022, 7, 284-291

40. Wenfu Xie, Hao Li, Min Wei*, et al. NiSn Atomic Pair on Integrated Electrode for Synergistic Electrocatalytic CO2 Reduction. Angew. Chem. Int. Ed. 2021, 60, 7382–7388

41. Rui Sui, Jiajing Pei, Zhongbin Zhuang*, et al. Engineering Ag−Nx Single-Atom Sites on Porous Concave N-Doped Carbon for Boosting COElectroreduction. ACS Appl. Mater. Interfaces 2021, 13, 17736-17744 

42. Tiliang Li, Yuting Wang, Yifu Yu*, Bin Zhang*, et al. Ru-Doped Pd Nanoparticles for Nitrogen Electrooxidation to Nitrate. ACS Catal. 2021, 11, 14032-14037

43. Bin Zhang*, et al. Promoting selective electroreduction of nitrates to ammonia over electron-deficient Co modulated by rectifying Schottky contacts. Science China Chemistry 2020, 63, 1469-1476

44. Jiangwei Shi, Bin Zhang*, et al. Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping. Science China Chemistry 2021, 64, 1493-1497 

45. Jintao Zhang* et al. Atomic Bridging Structure of Nickel-Nitrogen-Carbon for Highly Efficient Electrocatalytic Reduction of CO2. Angew. Chem.Int. Ed. 2022, 61, e202113918

46. Lang Xu* et al. Gadolinium Changes the Local Electron Densities of Nickel 3d Orbitals for Efficient Electrocatalytic CO2 Reduction. Angew. Chem.Int. Ed. 2022, 61, e202201166

47. Bin Zhang* et al. Phenanthrenequinone-like moiety functionalized carbon for electrocatalytic acidic oxygen evolution. Chem. 2022, 8, 1415-1426

48. Sheng Dai*, Minghui Zhua*, Yifan Han* et al. Probing the role of surface hydroxyls for Bi, Sn and In catalysts during CO2 Reduction. Applied Catalysis B: Environmental 2021, 298,

49. Nan Wang, Yonggang Wang*, et al. Zinc-organic Battery with a Wide Operation-temperature bbbbbb from -70 to 150 oC. Angew. Chem. Int. Ed. 2020,59,14577-14583

50. Nannan Meng, Yifu Yu, Bin Zhang*, et al. Efficient Electrosynthesis of Syngas with Tunable CO/H2 Ratios over ZnxCd1-xS-Amine Inorganic-Organic Hybrids. Angew. Chem. Int. Ed. 2019, 58, 18908–18912

 

 

品牌上海零露仪器
型号IR
加工定制
材质PEEK
产地其他
上海零露仪器设备有限公司
  • 公司类型私营有限责任公司
  • 经营模式其他-私营有限责任公司
  • 联系人Arina
  • 联系手机18198047742
  • 联系固话-
  • 公司地址
主营业务
电池原位质谱仪 电催化原位质谱仪 红外附件
上海零露仪器设备有限公司是一家专业生产和经销高品质国际知名品牌的原位表征科学仪器以及专业实验室分析仪器设备的企业。 产品种类有原位微分电化学质谱仪、原位电化学红外附件、在线气相质谱仪、膜进样质谱仪、稳定同位素质谱仪以及各类红外光谱仪附件,涡轮分子泵等各类真空应用解决方案等
Arina 电话咨询 立即询价